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Abstract 

In this paper, we present a novel synthesis of two 
separate areas of image processing: automatic target 
recognition/cueing (ATR/ATC) and embedded image 
compression. In order to maximize the information 
content of a transmitted image, an ATR algorithm is 
used to detect potential areas of interest, and the com- 
pression algorithm regionally compresses the image, 
allocating more bits to the areas of interest. In this 
fashion, contextual information is retained, albeit at a 
lower resolution. Examples of the hybrid algorithm are 
presented. 

1. Introduction and Background 

As the number of operational UAV's (unmanned aer- 
ial vehicles) and UCAV's (unmanned aerial combat 
vehicles) increases, the availability of sufficient com- 
munications bandwidth will become a major concern. 
While command and control signals require a small 
portion of the available bandwidth, high resolution 
imagery and video can easily consume all of the avail- 
able bandwidth and more. Unfortunately, tactical 
datalinks such as Link 16 or SATCOM only support 
data rates of 57 kilobits/s (with error correction) and 4.8 
kilobits/s respectively, while other high speed systems 
like CDL (ecu,,,., ..atalink) have significant limita- 
tions on the number of simultaneous users allowed. 
To increase the number of systems that can operate 
simultaneously using the limited RF bandwidth avail- 
able, one must adopt digital compression. However 
compression results in degraded imagery at the receiver 
for reasonable compression ratios (>2:1). With these 
severe limitations on the bandwidth in mind, we have 
developed a hybrid algorithm which draws upon 
ATR/ATC algorithms and regional embedded compres- 
sion techniques. 

The basic idea of the algorithm is relatively simple. 
While an image may contain several different objects 
(trucks, buildings, tanks, etc.) only a few may be of 
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potential interest to a military observer. An ATR 
algorithm is used to select potential areas of interest, 
which are then fed to a compression algorithm, that 
regionally compresses the image, allocating more bits 
to the areas of interest. This process results in an im- 
age which has areas of high resolution (potential 
targets) and areas of low resolution in which contextual 
information is retained. Overall, a high compression 
ratio can be achieved while maximizing information 
content. In the first section, we will describe the ATR 
algorithm, developed by Mahalanbobis et al [1-4], 
which we use to determine the regions of interest. In 
the following sections, we will describe the embedded 
zerotree wavelet (EZW) and how it has been adapted for 
spatially variant resolution. In the last sections we 
present some results and discuss potential applications 
and future directions. 

2. MACH Filters 

2.1   Mathematical   Overview 

In order to maximize the information content sent 
over the available bandwidth, we have chosen to iden- 
tify potential regions of interest. To accomplish this, 
we have implemented a class of correlation filters as 
developed by Mahalanobis et al. These filter - have 
exceptional tolerance to scaling and rotation distortions. 
The tolerance of the filters is incorporated through the 
selection of an appropriate training set, and can be 
tuned to provide high (generalization) or low 
(specificity) tolerance. 

In the discussion of the MACH (maximum average 
correlation height) filters that follows, bold lowercase 
indicates a column vector, while bold uppercase repre- 
sents a diagonal matrix. The filters result from 
maximizing the ratio 

J(h) = 
|h+m| 

h+Sh 
(1) 
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where h is the correlation filter and m is the average of 
the training images in the Fourier domain. Each image 
is lexigraphically ordered to form a vector. S is the 
average similarity measure matrix 

S = I(Xk-M)(Xk-M)4 
(2) 

k=l 

In eq. (2) Xk are the individual training images, 
again in the Fourier domain. The training image is 
lexigraphically ordered and its elements placed on the 
diagonal of Xk while M is the mean training image, 
arranged similarly to Xk. Furthermore, all of the proc- 
essing to generate the filters is performed in the Fourier 
domain to gain translational invariance. It is possible 
to perform the processing in other domains (e.g. wav- 
elet or spatial) but care must be taken to properly 
register the training imagery. 

The optimal filter h is then given by 

h-S"1 m. (3) 

Variants on the MACH filter can be achieved by vary- 
ing the performance metric one wishes to maximize. 
For example Refrieger [5] has developed optimal trade- 
off synthetic discriminant filters (OTSDF's) which 
attempt to minimize the energy functional 

E(h)=:h+Qh-8h+m 

where 

Q =  ocP + ßD+Y S. 

(4) 

(5) 

S is as defined previously, P is the power spectral 
density of the expected noise, and D is the average 
power spectral density of the training set. The con- 
stants a, ß, Y. 8 are non-negative and must satisfy a2 + 
ß2 + Y2 + 82 = k where k is any positive constant. 
Minimizing E(h) results in 

2 
(6) 

By varying the parameters, one can optimize filter 
performance for the situation under study. If one sets 
a = ß = 0 , the result is the MACH filter discussed 
earlier. Further variations can be made to the basic 
idea, including the extension to multiple class dis- 
crimination using distance classifier correlation filters 
(DCCF's), which are able to distinguish between mul- 
tiple classes of similar objects (e.g. T72's vs. M1A1 
tanks). 

The class of MACH filters was chosen for the fea- 
ture detection for several reasons. As discussed, the 
filters can incorporate varying degrees of distortion 
tolerance and can be built to generalize classes of tar- 
gets. Another benefit of the algorithm is that the result 
is statistically optimum and depends on a realistic, 
mathematically rigorous optimaztion procedure as op- 
posed to other heuristic methods. A final consideration 
is the computational efficiency. The MACH filters 
require no segmentation or edge detection preprocessing 
and the correlation step can be performed rapidly using 
dedicated FFT hardware. 

2.2   MACH   implementation 

To implement the MACH filters, one must first de- 
cide upon a representative training set. Typically, the 
training set consists of N<20 images from varying 
perspectives. A training set of one image will result in 
a filter similar to the matched filter with no distortion 
tolerance while having dozens of perspectives and scal- 
ings will produce a filter with a broad response and low 
discrimination properties. The filter h is first calculated 
off-line from the training data. If one is using the 
OTSDF's, some parameter tuning can be done at this 
point to maximize the correlation peaks for the training 
data. 

Following correlation of an input test scene with h, 
the correlation scene must be processed to determine the 
areas of interest. Previous correlation filters [6-8] had 
placed constraints on the correlation height, and classifi- 
cation was then accomplished by comparing the 
correlation height of the test scenes to the constraint. 
Generally, when using the correlation height as a metric 
for deuxiion and/or classification, a threshold must be 
set. By changing this threshold one can trade off be- 
tween the probability of detection and the probability of 
false alarms, a lower threshold allowing more false 
alarms and a higher threshold reducing the probability of 
detection. 

A second metric that can be used involves comparing 
a local correlation energy to the global correlation en- 
ergy. A square window (lxl, 3x3, 5x5...) is chosen and 
centered around the correlation peak. The energy within 
this window is calculated and the ratio of the local en- 
ergy to the global energy is calculated. This ratio can 
then be compared to a threshold for detection and classi- 
fication. The local energy percentage can be modified to 
allow for multiple target possibilities by selecting 
multiple windows based on correlation height and ex- 
cluding these energies from the global energy 
calculation. The benefit of this approach is that the 
ratio is  independent of illumination  or amplification 
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Figure 1. Embedded image compression. 

effects. The overall peak height can be affected by 
constant amplification but the ratio will remove this 
problem. This metric works well in rejecting false 
peaks due to clutter since most correlation surfaces for 
clutter images will not contain a high percentage of 
energy in a localized window. 

In our hybrid algorithm, the second metric was cho- 
sen to determine regions of interest. No hard 
thresholding was used for detection. Instead, the top 
three energy percentage locations were selected as po- 
tential regions of interest to be compressed at a higher 
resolution than the background. The choice of three 
targets is somewhat arbitrary and can be changed based 
on the application. If a large number of areas are de- 
sired at high resolution, it may impact how the coding 
of the side information is performed. The choice may 
also be eliminated completely with the use of thre- 
sholding to eliminate false alarms and to increase the 
probability of detection. In this demonstration it was 
sufficient to designate a number of potential targets to 
effectively illustrate the concept. 

3 .   Embedded Zerotree Wavelet 
Compression 

At the core of our feature-based approach to com- 
pression is an embedded coding algorithm. In this 
method of compression, data is transmitted to the re- 
ceiver in order of importance— i.e., that data which 
most reduces the error between the reconstructed image 
and the original image is sent first. This concept is 
illustrated in Fig. 1. There are a number of advantages 
to embedded compression algorithms: fixed bit rates 
(e.g., compression ratios) are easily achieved, unequal 

transmission error protection is trivial, and inherently 
robust bit streams can be created, 

freq—► 

Figure 2. Wavelet coefficient mapping with 
one complete zerotree shown. Note that the 
wavelet scale (sO, si, etc.) is inversely propor- 
tional to the spatial frequency. 

The fundamental observation which inspired the 
EZW algorithm [9] is that there is a strong correlation 
between insignificant coefficients at the same spatial 
locations in different wavelet scales- i.e., if a wavelet 
coefficient at a coarser scale is zero, then it is more 
likely that the corresponding wavelet coefficients at 
finer scales will also be zero. Figure 2 shows a 3-level, 
2D wavelet decomposition and the links which define a 
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single zerotree (the quadtree data structure containing all 
of the coefficients corresponding to a given region of 
the original image). If a wavelet coefficient at a given 
scale is zero along with all of its descendants (as shown 
in Fig. 2), then a special zerotree-root symbol (ZTR) is 
transmitted, eliminating the need to transmit the values 
of the descendants. Note that ZTR symbols can be 
created at any level of the wavelet coefficient mapping. 
Thus, if one of the three zerotree children at level s2 in 
Fig. 2 is significant for a given bit plane while the 
others are not, then the low frequency root coefficient 
must be represented by an isolated zero (IZ) symbol 
(assuming that it is also insignificant) while the two 
insignificant children are represented with ZTR sym- 
bols. Basically, one can view this redundancy 
extraction process as a multiresolutional, self- 
terminating run-length encoder. Regardless of how one 
views it, zerotrees exploit the correlation of in- 
significance across scales and decrease the number of 
symbols which must be processed by the arithmetic 
encoder and transmitted to the receiver. 

root. 

CD 

\ 

7 
7 

/ 

end 
Figure 3 :    Scanning order of wavelet coeffi- 
cients . 

In order to generate an embedded code (where informa- 
tion is transmitted in order of importance), the 
algorithm scans the wavelet coefficients in what is 
basically a bit-plane fashion. First, a starting threshold 
is selected that is at least 1/2 as large as the magnitude 
of the largest wavelet coefficient. If the starting thresh- 
old is selected to be a power of 2, then a very fast 
approach can be used to compute all of the zerotree 
dependencies in one pass through the wavelet coeffi- 
cients [10]. Starting with the appropriate threshold, the 
algorithm sweeps through the coefficients from low to 
high frequency subband as shown in Fig.  3, transmit- 

ting the sign (+ or -) if a coefficient's magnitude is 
greater than the threshold (i.e., it is significant), a ZTR 
if it is less than the threshold and the root of a zerotree 
at the coarsest possible scale, or an IZ otherwise- this 
is the dominant pass. Next for the subordinate pass all 
coefficients deemed significant in the dominant pass are 
added to  a second subordinate list   which  is   itself 
scanned. One bit is transmitted for each coefficient on 
this list during the pass, decreasing its approximation 
error in the decoder by 1/2 (the coefficient's absolute 
error during a given pass depends on the value of the 
starting threshold).    One iteration of this successive 
refinement process is illustrated by Fig. 4.   The thresh- 
old is then halved and the two passes are repeated with 
those coefficients having been previously found signifi- 
cant being replaced by zeros in the dominant pass (so 
that they do not inhibit the formation of future zero- 
trees).   The symbol stream created by this scanning 
process is then passed through an arithmetic encoder to 
eliminate any remaining statistical redundancy before 
transmission to the decoder.   A block diagram of the 
complete process is shown in Fig. 5a.    To estimate 
symbol probabilities for the  arithmetic encoder and 
decoder, we use the simple single-context, backward- 
adaptive model presented by Witten, et al. in   [11]. 
Slightly better compression can be achieved using the 
multicontext model proposed by Shapiro at the cost of 
decreased execution speed.    The routine of dominant 
pass, subordinate pass, and threshold reduction contin- 
ues until the bit budget is exhausted or until  some 
distortion criterion is reached; at that point, the encoder 
transmits a stop symbol and begins processing the next 
frame in the video sequence. 

Initial 
Uncertainty 

Interval 
} 
} 

up Refined 
Uncertainty 

Interval 
down 

Figure 4. One iteration of the successive re- 
finement process. 

The image decoder simply inverts each operation per- 
formed by the encoder in reverse order: i.e., it 
arithmetically decodes the bit stream to create symbols 
and then it decodes the symbols to progressively refine 
its estimates of the wavelet coefficients.   This process 
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Figure 5: (a) Embedded image encoder and (b) embedded image decoder. 

is illustrated by the block diagram shown in Fig. 5b. 
Since the arithmetic coding model is backward adaptive, 
we need not transmit it as side information. Further- 
more, because the decoder's knowledge exactly mirrors 
that of the encoder at any given point in the processing 
of the bit stream, there is no need to transmit pass 
delimiters or synchronization signals (although these 
might be useful for resolution-scaleable compression). 
Also, the resolution enhancement bits transmitted dur- 
ing the subordinate pass do not need any location 
specifiers- the decoder knows the exact transmission 
order of these bits because it has reconstructed the same 
subordinate list as the encoder had at that point in the 
processing. 

4.    Feature-Based Compression 

4.1   Feature-selective   resolution   control 

The conventional EZW algorithm allocates resolu- 
tion uniformly across the image. To achieve this 
spatial uniformity, it actually distributes resolution to 
the wavelet coefficients non-uniformly across the wav- 
elet scales (i.e., frequency subbands).   Specifically, a 

coarser scale is allocated twice as much resolution as the 
next finer scale; this allocation is implicitly controlled 
by the use of a unitary or unitary-like scaling in the 
wavelet decomposition. Such coefficient scaling has 
the effect of increasing the gain in each successive level 
of the 2D wavelet decomposition by a factor of 2. To 
understand how a multiplicative factor implicitly con- 
trol resolution, consider the following example: assume 
that the true value of a wavelet coefficient is 85 and that 
the final dominant pass through the coefficients ends 
with threshold T = 64. Without rescaling, the final 
uncertainty interval for this coefficient in the decoder 
will be [64, 128), resulting in a reconstructed coefficient 
value of 96 ±32. Now, assume instead that this coeffi- 
cient is multiplied by 2 prior to coding (i.e., we code 
the value 170). During the pass when T=128, the coef- 
ficient will be declared significant and approximated in 
the decoder by 192 +64. After the refinement pass, 
however, the new approximation will be 160 ±32. 
Since the encoder stops after the dominant pass for 
T=64, the coefficient will receive no further refinement 
bits. Dividing the coefficient approximation by 2 re- 
stores   its   original   scaling  and  results   in   the   final 
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estimate of 80 ±16. Thus, the uncertainty region of the 
new estimate, \64, 96), is 1/2 that of the original! 

While scaling is used in the classical EZW algorithm 
to implicitly control the bit allocations to coefficients 
in the different wavelet scales, it can also be used ex- 
plicitly to weight 'features' in the imagery. What is a 
feature? By our definition, it is anything in the imagery 
that can be localized in space and/or frequency. For 
example, a tank in a reconnaissance photo might be a 
spatial feature to which we want to allocate additional 
resolution. On the other hand, an orchard in the same 
photo could represent a space-frequency feature (i.e., a 
feature that is defined by a frequency spectrum within a 
spatial region) whose resolution allocation should be 
reduced in order to increase the resolution of other, more 
interesting portions of the image. Either way, the 
allocation of resolution (and thus bits) is most easily 
controlled by scaling coefficients up or down by the 
appropriate powers of 2 prior to encoding. It is impor- 
tant to note, however, that rescaling only adjusts the 
resolution of coefficients relative to other coefficients- 
this process is a zero sum game! Thus, scaling all of 
the wavelet coefficients up by a factor of 2 will have no 
effect on the resolution of the reconstructed image . 
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Figure 6: All coefficients shaded in gray are 
rescaled together. 

4.2     Coding  Scheme 

By using coefficient rescaling, we create a single em- 
bedded bit stream in which different wavelet coefficients 
are represented with varying precision. If all of the 
coefficients corresponding to a single zerotree are coded 
at a specified precision, then the corresponding region of 
the reconstructed image will  be reconstructed at  the 

same precis.on (assuming that orthonormal wavelets are 
used). The x's in Fig. 6 correspond to the coefficients 
which form a complete zerotree, and it is these coeffi- 
cients which must be multiplied by a power of 2 
scaling factor to increase the resolution of the corre- 
sponding 16x16 image region. The size of the region 
in the image which corresponds to 1 zerotree (the 
minimally controllable region) for a depth L wavelet 
decomposition is 2Lx2L. Thus, to spatially vary the 
resolution across the image, one need only varying the 
coefficient scaling on a zerotree by zerotree basis. If, on 
the other hand, one wishes to increase or decrease the 
resolution of specific frequency bands within a given 
region, one must vary the scaling factor between wav- 
elet scales corresponding to the same zerotree. Note 
that by using a fixed wavelet decomposition, we have 
limited the amount of frequency control which can be 
achieved- i.e., the bandwidth of each image subband 
increases by a factor of 2 in each dimension as the wav- 
elet scale decreases. If one instead used an adaptive 
wavelet packet decomposition [12], [13], one could also 
optimize the bandwidth of the subbands for the space- 
frequency features of interest. Because such wavelet 
packets greatly increase the complexity of the encoder, 
however, we have chosen not to use them in our sys- 
tem. 

COMPOSITE BITSTREAM 

mean]—threshl quality factors I ztr location:)        empeaaea pit stream    | 

FIRST w     TO    b.    LAST 

quality factors: (2 bits) 
UU " 2X Ms1. Increase 
01 =4x res. increase 
10 = 8x res increase 
11 s Terminator 

transmission order 
ztr locations: (8 bits) 

of 256 aüuiesses 
zcrotrecs 

Figure 7:  Organization of compressed bit 
stream. 

For the decoder to correctly reconstruct the wavelet 
coefficients, it must know which areas have been res- 
caled and by what scaling factor. The only exception to 
this general rule is when a coefficient has been scaled 
down so much that it will be reconstructed as 0 by the 
decoder. In the case where small areas of enhanced 
resolution are desired, the side information describing 
the rescaling to the decoder is very compact and does not 
require lossless compression. Figure 7 shows the or- 
ganization of the compressed bit stream. First, the 
image mean (which was subtracted from the image prior 
to the wavelet decomposition) and starting threshold are 
sent; this is always done for any embedded compression 
algorithm. Next, a set of quality factors are transmitted, 
one for each zerotree whose resolution has been in- 
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creased. In the current instantiation, each quality factor 
is a 2 bit quantity and allows for three levels of resolu- 
tion increase (x2, x4, and x8). Since the number of 
zerotrees with resolution increases is not predetermined, 
a fourth parsing symbol is also allowed which termi- 
nates the 'quality factors' section and tells the decoder 
how many 'ztr locations' to expect. Each 'ztr location' 
is a numeric value which uniquely indexes 1 zerotree; if 
the image is of size 512x512 and a depth 5 decomposi- 
tion is used, then 1 byte is sufficient to uniquely 
identify a zerotree. One zerotree location is transmitted 
for each 'quality factor', and the ordering is such that 
each zerotree location index corresponds exactly to a 
previously transmitted quality factor. In addition, no 
parsing symbol is needed because the decoder already 
knows how many zerotree location indices to expect. 
Finally, the embedded bit stream containing the com- 
pressed representation of the actual image is transmitted 
to the decoder. 

One might note that the proposed method of trans- 
mitting the side information will not be particularly 
efficient if a large number of zerotrees are rescaled. In 
such a situation, it might be more efficient to simply 
send 1 bit for each zerotree indicating whether or not its 
scaling has been altered along with an ordered list con- 
taining the magnitudes of the rescaling. In the case 
where there are 256 total zerotrees, transmitting the ztr 
location specifiers in this way would require exactly 32 
bytes. Thus, the tradeoff is clear: if fewer than 32 
zerotrees are rescaled, an explicit index to each should be 
transmitted; otherwise, the 1 bit/zerotree rescaling map 
should be sent. 

5.    Results 

For the results presented in this section, we use a 5- 
level decomposition based on a 5/3 biorthogonal wav- 
elet transform galled (2,2) in [14]). To increase its 
speed, we use lifting to implement this wavelet which 
allows the high and lowpass filters to share computa- 
tions [15]. In addition, lifted transforms are in-place and 
thus do not require large amounts of scratch memory 
during computation. Since a 5-level decomposition has 
been selected, the minimally controllable spatial region 
is 32x32 (not taking into account the overlapping basis 
functions of the transform). From a sequence of 800 
frames, a training set of ten images containing the 
group of four buildings indicated by the white arrow in 
Fig. 8a. was selected. 

From this training set, a MACH filter was con- 
structed, to recognize the buildings as the feature of 
interest. The size of the filter in this case was 64x64 
which is larger than the minimally controllable region 

as determined by the depth of the wavelet transform. 
The regions with the top 3 correlation peaks (i.e., the 
best 3 matches) are allocated resolution according to the 
following formula: #1 always receives 8 times the 
resolution of the background; #2 and #3 receive the 
same if their correlation peaks are within 5% of #1, but 
they receive x4 resolution if the peaks are within 20%, 
and x2 resolution if less than 20%. The reasoning 
behind such an allocation scheme is that while the 
MACH filter ideally will always return the highest 
correlation peaks for the true target, this is not always 
the case. If a false alarm has the highest peak value, 
presumably the true target has a similar value and hence 
correlation peaks within 5% of the top peak receive the 
same resolution. If the correlation scores are signifi- 
cantly different, the probability that the lower scores are 
true targets decreases and the region receives a lower bit 
allocation. Figures 8 and 9 illustrate the results for 
compression at ratios of 80:1 and 160:1, respectively. 
By looking at the error residuals (Figures 8b and 9b), 
one can see the differences in the allocation of resolu- 
tion to the different regions. In both examples, the area 
containing the group of four buildings has the highest 
resolution while the other two highlighted regions have 
lower resolution (but still higher than the background). 
As mentioned previously, the choice of three high qual- 
ity regions is somewhat arbitrary but it does depend 
some on the design of the MACH filter. A tradeoff 
between the amount of compression and the probability 
of detection and false alarms needs to be considered 
when actually implementing this algorithm in practice. 

6. Discussion and Conclusions 

:.. ..._ pievious sections we have described ■"> synthe- 
sis of two disparate areas of image processing: 
compression and ATR/ATC. The regional compres- 
sion algorithm expands the effective bandwidth 
available by maximizing the information content of the 
transmitted imagery, using information from the ATR 
algorithm. One obvious area where this technique may 
prove valuable is in the UAV/UCAV arena. For ex- 
ample, with the use of the ATR/ATC driven 
compression, analysis by a human operator is simpli- 
fied, rapidly identifying potential areas of interest. A 
second area Vvhere this work could be extended to is 
image database management. By utilizing regional 
compression driven by an ATR/ATC algorithm it is 
possible to achieve useful compression ratios (>80:1) 
while preserving image quality in areas that may be of 
interest. The potential savings in communications 
bandwidth could enable more vehicles to operate simul- 
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taneously than would be possible with standard com- 
pression techniques in use currently. 
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(b) 
Figure 8: (a) Reconstruction of image compressed by 80:1 ratio. Squares have been added to highlight en- 

hanced regions and arrow indicates the particular region of interest for which the system was trained, (b) Error 
residual between reconstructed and original image where white areas in residual denote large errors. 

American Institute of Aeronautics and Astronautics 



mä 

ss&äS 

**&& 

1 

Figure 9: (a) Reconstruction of image compressed by 160:1 ratio. Again, squares have been added to highlight 
enhanced regions, (b) Error residual between reconstructed and original image where white areas in residual denote 
large errors. 
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